Endliche Summen Berechnen Beispiel Essay

Eine Summe ist in der Mathematik das Ergebnis einer Addition. Im einfachsten Fall ist eine Summe also eine Zahl, die durch Addition zweier oder mehrerer Zahlen entsteht. Dieser Begriff besitzt viele Verallgemeinerungen. So sprach man früher beispielsweise von summierbaren Funktionen und meinte damit integrierbare Funktionen.

Wortgeschichte und -bedeutungen[Bearbeiten | Quelltext bearbeiten]

Das Wort Summe wurde im Mittelhochdeutschen von lateinisch summa entlehnt. Summa war bis in das 19. Jahrhundert neben Summe gebräuchlich und geht auf summus zurück, einen der lat. Superlative zu superus „oberhalb befindlich, der/die/das Höhere/Obere“, die folglich „der/die/das Höchste/Oberste“ bedeuten. „Das Oberste“ deshalb, weil die Römer die Summe in der obersten Zeile, also über den Summanden, zu notieren pflegten und nicht, wie heute üblich, „unterm Strich“.

In der Alltagssprache bezeichnet Summe einen Geldbetrag, unabhängig davon, ob er durch Addition zustande gekommen ist oder nicht.

Summe als Ergebnis einer Addition[Bearbeiten | Quelltext bearbeiten]

In dem mathematischen Term

heißen die Zahlen 2 und 3 Summanden. Der gesamte Term wird ebenso wie das Ergebnis 5 als die „Summe von 2 und 3“ bezeichnet.

Man kann eine Summe mit mehr als zwei Summanden bilden, so zum Beispiel . Eine häufige Konvention ist dabei, bei Linksklammerung die Klammern einfach wegzulassen, also einfach mit abzukürzen. Aufgrund der Assoziativität der Addition von natürlichen Zahlen spielt es hier übrigens für das Ergebnis keine Rolle, in welcher Reihenfolge die Additionen auszuführen sind. So gilt:

Mit dem Gleichheitszeichen wird dabei die Gleichheit der Ergebnisse der beiden unterschiedlichen Terme ausgedrückt.

Aufgrund des Kommutativgesetzes der Addition von natürlichen Zahlen ist auch die Reihenfolge der Summanden irrelevant, zum Beispiel gilt:

Wird -mal die gleiche Zahl addiert, dann kann die Summe auch als Produkt geschrieben werden.

Gewichtete Summe[Bearbeiten | Quelltext bearbeiten]

In einigen Fällen werden die einzelnen Summanden nicht einfach addiert, sondern zuvor noch mit einem Gewicht multipliziert:

Zum Beispiel:

In diesem Fall spricht man von einer gewichteten Summe. Teilt man die gewichtete Summe durch die Summe der Gewichte, erhält man das gewichtete arithmetische Mittel.

Summe einer Folge, Reihe[Bearbeiten | Quelltext bearbeiten]

Wenn eine Summe sehr viele Summanden hat, ist es zweckmäßig, eine abgekürzte Schreibweise zu vereinbaren. Die Summe der ersten 100 natürlichen Zahlen kann zum Beispiel als

angegeben werden, denn es ist leicht zu erraten, welche Summanden durch die Auslassungspunkte ersetzt wurden.

So wie man in der elementaren Arithmetik von Zahlenrechnungen wie zu Buchstabenrechnungen wie übergeht, kann man z. B. auch die Summe von hundert ganz bestimmten Zahlen zur Summe einer beliebigen Anzahl beliebiger Zahlen verallgemeinern. Dazu wird zunächst eine Variable gewählt, zum Beispiel , die die Anzahl der Summanden bezeichnet. Im obigen Fall, der Summe der ersten einhundert natürlichen Zahlen, wäre . Da beliebig große zugelassen sein sollen, ist es nicht möglich, alle Summanden mit verschiedenen Buchstaben zu bezeichnen. Stattdessen wird ein einzelner Buchstabe, z. B. , gewählt und um einen Index ergänzt. Dieser Index nimmt nacheinander die Werte an. Die Summanden heißen dementsprechend . Sie bilden somit eine Zahlenfolge.

Wir können nun für beliebige natürliche Zahlen die Summe der ersten Glieder der Zahlenfolge als

schreiben. Wenn man für verschiedene Werte einsetzt, bilden die ihrerseits ebenfalls eine Folge. Eine solche Folge von Partialsummen über die Anfangsglieder einer Folge wird als Reihe bezeichnet.

Beispiel: Für die Folge der Quadratzahlen ist , , . Ganz allgemein gilt:

Die Reihe der Partialsummen dieser Folge beginnt mit , , . Eine Summationsformel besagt nun für beliebige :

Weitere Summationsformeln wie zum Beispiel Der kleine Gauß

finden sich in der Formelsammlung Arithmetik. Der Beweis solcher Formeln kann oft mittels vollständiger Induktion erfolgen.

Notation mit dem Summenzeichen[Bearbeiten | Quelltext bearbeiten]

Summen über endliche oder unendliche Folgen können statt mit Auslassungspunkten auch mit dem Summenzeichen notiert werden:

Das Summenzeichen besteht aus dem großen griechischen BuchstabenΣ (Sigma), gefolgt von einem Folgenglied, das durch einen zuvor nicht benutzten Index (hier ) bezeichnet wird. Dieser Index wird oft als Laufindex oder Summationsvariable bzw. Lauf- oder Zählvariable bezeichnet. Hierfür wird oft einer der Buchstaben verwendet. Wenn nicht eindeutig hervorgeht, welche Variable die Zählvariable ist, muss dies im Text angemerkt werden.

Einfaches Beispiel:

Welche Werte die Laufvariable annehmen kann, wird an der Unterseite, gegebenenfalls auch der Oberseite des Zeichens Σ angezeigt. Es gibt dafür zwei Möglichkeiten:

  1. Entweder wird unten ein Start- und oben ein Endwert angegeben (hier: und ). Der Laufindex wird in der Regel nur unten angeschrieben; ausführlicher, aber recht ungebräuchlich, ist
  2. Oder es werden unten eine oder mehrere Bedingungen für die Zählvariable angegeben. Das obige Beispiel kann also auch durch notiert werden.

Diese Angaben können reduziert oder weggelassen werden, wenn angenommen werden kann, dass der Leser sie aus dem Kontext heraus zu ergänzen vermag. Hiervon wird in bestimmten Zusammenhängen ausführlich Gebrauch gemacht: In der Tensorrechnung vereinbart man häufig die einsteinsche Summenkonvention, der zufolge sogar das Summationszeichen weggelassen werden kann, da aus dem Kontext klar ist, dass über alle doppelt vorkommenden Indizes zu summieren ist. Hier eine Animation zur Sigma-Schreibweise:

Formale Definition[Bearbeiten | Quelltext bearbeiten]

Sei eine (Index-) Menge, ein kommutatives Monoid. Für jedes sei ein gegeben. Dann kann zumindest für endliche Indexmengen durch Rekursion definiert werden: Man setzt

und ansonsten

nach Wahl eines beliebigen Elementes . Kommutativität und Assoziativität der Addition in garantieren, dass dies wohldefiniert ist.

Die Schreibweise mit ist in diesem Sinne nur eine Abkürzung für mit .

Falls unendlich ist, ist allgemein nur definiert, falls für fast alle gilt. In diesem Fall setzt man

Rechts steht nach Voraussetzung eine endliche Indexmenge, also eine wie oben definierte Summe. Sind unendlich viele ungleich 0, dann handelt es sich trotz gleichartiger Schreibweise nicht mehr um eine Summe, sondern eine Reihe (siehe unten).

Klammerkonventionen und Rechenregeln[Bearbeiten | Quelltext bearbeiten]

Wird das Folgeglied als Summe (oder Differenz) mitgeteilt, so muss es in Klammern geschrieben werden:

Wird das Folgeglied als Produkt (oder Quotient) mitgeteilt, so ist die Klammer überflüssig:

Vorsicht: Allgemein gilt:

Besondere Summen[Bearbeiten | Quelltext bearbeiten]

Für besteht die Summe aus einem einzigen Summanden :

Für hat man eine sog. leere Summe, die gleich 0 ist, da die Indexmenge leer ist:

Ist das Folgeglied konstant (genauer: unabhängig von der Laufvariablen), kann die Summe zu einem einfachen Produkt umgeschrieben werden (sofern ):

Doppelsummen[Bearbeiten | Quelltext bearbeiten]

Auch über Summen kann wieder summiert werden. Das ist insbesondere dann sinnvoll, wenn die erste, die „innere“ Summe, einen Index enthält, der als Laufindex für die „äußere“ Summe verwendet werden kann. Man schreibt zum Beispiel:

Dabei gilt die Regel:

Das große griechische Sigma wird oft verwendet, um Folgen von Zahlen zu addieren. Es wird dann „Summenzeichen“ genannt.

In den vorigen Kapiteln haben wir uns mit Folgen und deren Grenzwerten auseinandergesetzt. Dieses Konzept wollen wir nun nutzen, um unendliche Summen mathematisch exakt zu beschreiben. Dabei werden wir auf den Begriff der Reihe stoßen, den wir in den nächsten Kapiteln untersuchen wollen.

Motivation der Reihe[Bearbeiten]

Was ist ? Hier kann man so vorgehen: Wir starten beim Quadrat mit der Seitenlänge . Dessen Flächeninhalt ist . Nun halbieren wir abwechselnd die horizontale und die vertikale Seite. Man erhält so das Rechteck mit dem Flächeninhalt , danach das Quadrat mit der Fläche , dann das Rechteck mit der Fläche und so weiter. Diese Rechtecke können wir geschickt anordnen:

Wenn wir alle Flächen zusammenaddieren, erhalten wir ein Rechteck mit den Maßen und dem Flächeninhalt . Der Wert der unendlichen Summe sollte also gleich sein. Wir kommen zum selben Ergebnis, wenn wir die Teilsummen der unendlichen Summe bestimmen:

Die Werte der Teilsummen scheinen gegen zu streben. Das unterstützt die These, dass ist.

Wir haben gerade einer unendlichen Summe einen Wert zugeordnet. Doch jetzt stellt sich die Frage, wie wir das intuitive Konzept einer unendlichen Summe exakt definieren können. An dieser Stelle eröffnen sich einige Fragen:

  • Wie können wir generell den Wert einer unendlichen Summe bestimmen?
  • Gibt es unendliche Summen, denen wir keinen Wert zuweisen können?
  • Wie unterscheidet man unendliche Summen, denen ein Wert beziehungsweise denen kein Wert zugewiesen werden kann?

In diesem Kapitel stellen wir mit dem Konzept der Reihe die formale Definition einer unendlichen Summe vor. Wir werden Reihen mit Hilfe von Partialsummen (= „Teilsummen“) definieren. Die Partialsummen bauen auf dem Begriff der endlichen Summe auf. In späteren Kapiteln beantworten wir die Frage, welchen unendlichen Summen wir einen Wert zuweisen können und welchen nicht.

Endliche Summen[Bearbeiten]

Eine endliche Summe ist (wie der Name schon ahnen lässt) nichts anderes, als eine Summe mit endlich vielen Summanden. Es gibt dafür eine gesonderte Schreibweise, die wir im Kapitel „Summe und Produkt“ kennengelernt haben. Hier haben wir gesehen, dass man anstelle von

auch

schreiben kann. Dabei ist der Laufindex, der alle Werte vom Anfangswert bis zum Endwert annimmt. Für jeden angenommen Wert von gibt einen Summanden zurück. Am Ende werden diese Summanden addiert. An folgender Animation wird dieses Prinzip verdeutlicht:

Partialsummen[Bearbeiten]

Nachdem wir wissen wie endliche Summen definiert sind, können wir uns der formalen Definition einer unendlichen Summe widmen. Hierzu starten wir mit der Form, die uns intuitiv plausibel erscheint:

Wir betrachten zunächst die Folge der Teilsummen:

Diese Folge werden wir später benutzen, um unendliche Summen zu definieren. ist die Summe der ersten Summanden und stellt eine endliche Summe dar:

Diese Teilsummen werden in der Mathematik Partialsummen (aus dem Lateinischen, von „pars“ = Teil) genannt. Sie sind ein endlicher Teil der unendlichen Summe. Die formale Definition lautet:

Sigmaschreibweise für endliche Summen

0 thoughts on “Endliche Summen Berechnen Beispiel Essay

Leave a Reply

Your email address will not be published. Required fields are marked *